If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5q^2+4q+1=0
a = 0.5; b = 4; c = +1;
Δ = b2-4ac
Δ = 42-4·0.5·1
Δ = 14
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-\sqrt{14}}{2*0.5}=\frac{-4-\sqrt{14}}{1} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+\sqrt{14}}{2*0.5}=\frac{-4+\sqrt{14}}{1} $
| -3x+8(x-4)=3x-40 | | x-7(x-7)=91 | | x3+9=33 | | 6x+3+5x-2=45 | | (2x+1)3=0 | | 284=7-v | | 0.25x=9 | | 9=22y | | 2k=k5 | | 4-m/7=20+10 | | I3(-5)-4(-4)=zI | | 8000=4000(1.08^x) | | n+5(3n+2)=26 | | 3(-x+3)/3+21=31 | | 7|m-6|=49 | | (3(-x+3)/3+21=31 | | 5x+(x-4)=-2x-12 | | 2x+8=-34 | | -2(x-4)+5=-13 | | 9y+17=225 | | -2(x-4)+55=-13 | | 9-c=-17 | | X²+12x=0 | | X`+12x=0 | | 2x+5=6x−17 | | -1/2+2y=3 | | |5u-4|=|5u+9| | | 9+d=-56 | | 9x=8+6x | | X-2+6x=0 | | 4y−3=17 | | 27.4x33.68= |